

K.-U. Kühnberger, S. Rudolph, P. Wang (Eds.): AGI 2013, LNAI 7999, pp. 88–97, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Universal Induction with Varying Sets of Combinators

Alexey Potapov1,2 and Sergey Rodionov1,3

1 AIDEUS, Russia
2 National Research University of Information Technology, Mechanics and Optics,

St. Petersburg, Russia
3 Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR

7326, 13388, Marseille, France
{potapov,rodionov}@aideus.com

Abstract. Universal induction is a crucial issue in AGI. Its practical applicabili-
ty can be achieved by the choice of the reference machine or representation of
algorithms agreed with the environment. This machine should be updatable for
solving subsequent tasks more efficiently. We study this problem on an exam-
ple of combinatory logic as the very simple Turing-complete reference
machine, which enables modifying program representations by introducing dif-
ferent sets of primitive combinators. Genetic programming system is used to
search for combinator expressions, which are easily decomposed into sub-
expressions being recombined in crossover. Our experiments show that low-
complexity induction or prediction tasks can be solved by the developed system
(much more efficiently than using brute force); useful combinators can be re-
vealed and included into the representation simplifying more difficult tasks.
However, optimal sets of combinators depend on the specific task, so the refer-
ence machine should be adaptively chosen in coordination with the search
engine.

1 Introduction

Universal algorithmic induction or prediction based on Kolmogorov complexity or
Solomonoff probability is one of key components of mathematical models of AGI [1].
Of course, direct application of pure universal induction is impractical in general. One
should introduce some strong bias and priors to turn it into efficient pragmatic AGI
[2]. At the same time, some cases, for which no priors are given, will always be en-
countered. True AGI should be able to deal with these cases.

Thus, universal induction can still be an essential component of pragmatic AGI.
One can even assume that it is the basic building block of intelligence. For example
cortex columns might perform universal induction with low-complexity models.
Some such block of universal induction should be presented even in complex prag-
matically but generally intelligent systems with numerous priors. Unsurprisingly,
different authors have introduced search for short programs or codelets both for envi-
ronment models and behavior policies in their models or cognitive architectures in-
tended not only for theoretical analysis (e.g. [3–5]).

 Universal Induction with Varying Sets of Combinators 89

Choice of the reference machine greatly influences efficiency of universal induc-
tion [4], [6]. However, if universal induction should work in cases, for which no
priors exist, it might be inessential, what reference machine to use in low-complexity
“unbiased” induction (especially because one universal machine can be emulated on
another one). At the same time, when it comes to choosing the very concrete imple-
mentation of the reference machine in practice, it appears that intuitively simple regu-
larities cannot be induced with the use of arbitrary reference machines. Additionally,
some special programs such as self-interpreters have considerably different lengths
within different formalisms [7]. Analogy with evolution shows that this difference can
be crucial. Indeed, emergence of self-replicants enabling further incremental self-
improvement is possible, only if they are not too complex. Thus, the choice of the
reference machine does matter, even if we consider low-complexity universal induc-
tion without concern for pragmatic priors.

In practice, one would like to utilize some advanced programming language as the
reference machine to be able to solve at least slightly interesting induction tasks, but
the choice of language details is usually very loosely grounded. In theory, some uni-
versal Turing machine without its complete definition is frequently used as the refer-
ence machine (e.g. [1], [6]). Gradual transition between these two extrema should
exist. What general requirements can be put on the reference machine?

Direct search for long algorithms is practically impossible. Fortunately, any algo-
rithm can be represented as a concatenation of its parts. For example, algorithms can
be represented as strings encoding programs for universal Turing machine. These
strings can easily be divided into substrings, and one can try to find them separately
or at least without enumeration of combinations of all possible substrings. However,
independent reconstruction of such substrings will be possible, only if each of them
has it own utility. Apparently, possibility of decomposition depends on the task being
solved, but it also depends on the used reference machine (or representation of algo-
rithms). For example, arbitrary substring of a program for UTM encoded in some
binary form may have no self-contained sense.

Some other formalisms such as recursive functions and λ-calculus include compo-
sition as the basic operation. Since crossover in genetic programming (GP) allows
programs to exchange their subprograms, GP and these formalisms ideally fit each
other. Indeed, traditional functional programming languages are built on the basis of
λ-calculus and are frequently used in functional GP, particularly in application to
inductive programming, in which, however, strong biases (uninteresting for us here)
are usually introduced in order to achieve feasible solutions of such tasks as number
sequences prediction. Also, application of GP to both functional programming lan-
guages and pure λ-calculus requires dealing with local variables that makes it tricky.
Another formalism, which is extensionally equal to λ-calculus, and can represent
programs that use variables (e.g. via λ-abstractions, let-expressions, etc.) without
introducing variables (similar to point-free style), is combinatory logic (CL). This
makes implementation of GP with CL rather simple, because it doesn’t require using
complex genetic operators for handling variables, yet as powerful as with λ-calculus.

Surprisingly, there are few implementations of GP with CL in comparison with λ-
calculus. Additionally, CL is typically used with GP for automatic theorem provers

90 A. Potapov and S. Rodionov

[8]; as far as we know, there are no solutions for induction on binary strings using CL.
At the same time, some authors claim that “combinator expressions are an ideal repre-
sentation for functional genetic programming”, “because they are simple in structure,
but can represent arbitrary functional programs”, and that “genetic programming with
combinator expressions compares favorably to prior approaches, namely the works of
Yu [37], Kirshenbaum [18], Agapitos and Lucas [1], Wong and Leung [35], Koza
[20], Langdon [21], and Katayama [17]” (see [9] and references ibid). Thus, there is
an interesting niche of implementing universal induction with CL.

In this paper, we implement GP search for CL expressions producing given binary
strings. However, our task is not to prove favorability of CL or to develop efficient
GP system, which are used here as tools. We are interested in stricter and more de-
tailed comparison and selection of representations of algorithms. To do this, we use
different sets of primitive combinators within CL that yields different program repre-
sentations, and compare their performance on different tasks of inductive inference.

2 Combinatory Logic as the Family of Reference Machines

Detailed description of combinatory logic goes beyond the scope of our paper, but at
least some notions should be introduced in the context of the topic under considera-
tion. Expressions or terms in CL are either atomic symbols (primitive combinators or
additional terminal symbols) or a composition of expressions. Computation in CL is
represented as the process of reduction of a combinator expression. This process con-
sists of applications of reduction rules defined for each primitive combinator. For
example, if two combinators S and K are given, and their reduction rules have the
following form:

K x y  x S x y z  x z (y z)

where x, y, z are arbitrary terms, the expression (S K K x) will be reduced as follows

S K K x  K x (K x)  x

It should be pointed out that application is left associative, i.e. (S x y z) is interpreted
as (((S x) y) z).

Interestingly, these S and K primitive combinators constitute the complete basis,
i.e. for any computable function, there is a combinator expression composed of S and
K (and brackets), which is extensionally equivalent to this function.

For example, one can use combinator expressions with additional 0 and 1 as the
terminal symbols to generate arbitrary binary strings. The reduction of S10(01) will
produce 1(01)(0(01)). This gives us the very simple Turing-complete reference ma-
chine for studying universal induction/prediction.

Reduction rules for the primitive combinators are also easy to implement, if com-
binator expressions are represented as trees. Different possible tree representations
can be proposed, e.g. one can place all terminal symbols in leaves of a binary tree
with each node standing for the application of its left branch to right branch. We im-
plemented another representation, in which each node contains a terminal symbols,

 Universal Induction with Varying Sets of Combinators 91

and branches correspond to expressions, which this symbol is applied to. One good
feature of CL is that any such tree can be considered as valid (possibly not reducible
though). This feature makes implementations of different search techniques for com-
binator expressions including genetic operators also very simple.

Combinatory logic can be interesting as the basic representation of algorithms for
universal induction. However, comparison of efficiency of different sets (libraries) of
primitive combinators is even more interesting. The most traditional combinators (in
addition to S, K) in CL are describe with the following and some other reduction rules

I x  x B x y z  x (y z) C x y z  x z y
W x y  x y y Y x  x (Y x)

The choice of the library of primitive combinators greatly influences the length of
different algorithms, and can be considered as the choice of the reference machine
(from some family of such machines). Extension of the library of combinators during
the agent’s lifetime will correspond to adaptive versions of universal induction or
incremental learning (e.g. [10], [11]).

If the same expression appears several times in solutions of consequent induction
tasks, it can be moved to the reference machine as the new primitive combinator.
Since the same combinator can appear in one solution more than once, it can be useful
to try introducing different combinators as a higher level of search instead of identify-
ing them as repeating expressions in solutions. Moreover, if non-exhaustive search is
performed, some expressions can be encountered only once and will not be used to
form new combinators on the base of the algorithmic complexity criterion only, but
these possible combinators may still be useful as search heuristics. For example, mu-
tations in GP usually replace one symbol by another; certain sequence of mutations,
which is hardly probably if intermediate results have small values of the fitness func-
tion, can turn into one probable mutation given suitable library of combinators. We
don’t propose a solution of the problem of library combinators learning, but compare
results of solving induction problems depending on the used set of combinators.

However, there are also some “technical details”, which can affect the comparison
results. Different ways of using results of reduction of CL expressions in induc-
tion/prediction exist.

• One can introduce terminal (data) symbols, e.g. 0 and 1, and expect strings of these
terms as the result of reduction. This approach is very handful in symbolic induc-
tion, in which supplementary terms can stand for built-in functions, numbers, etc.
(up to some regular programming language, e.g. [8]). Usage of built-in functions in
addition to combinators is also more practical, because it allows introducing desir-
able inductive bias. Another possibility is to interpret combinator symbols in the
reduced expression as data elements (e.g. S and K can stand for 0 and 1). Such ex-
pressions as S(K(S(K))) cannot be reduced, and arbitrary binary string can be
represented in this form. This approach can give more compact descriptions of
some regularities, since the same combinator terms can act both as processing ele-
ments and as output. It is also not really unnatural, especially if we consider hierar-
chical representations, in which models of higher levels should produce models of
lower levels. Another interesting aspect of this approach is that sensory data can be

92 A. Potapov and S. Rodionov

directly interpreted as code (but usefulness of this interpretation is questionable).
One problem here consists in the fact that inverse strings (e.g. 01010… and
10101…) have different complexity that might seem unnatural.

• Reduced expressions can contain remaining combinator symbols, which cannot be
found in data strings. One can consider this situation as inconsistency between gen-
erated and real strings. However, one can also simply remove unnecessary symbols
(e.g. making 010101 and 01S01S01S equivalent). The second approach is some-
what artificial, but it could be more efficient.

• Type theory can be used to determine functional types of expressions (as it is done
in [8]). Types are very useful in the case of symbolic induction, in which terminal
symbols can have predefined types, but they can be unnecessary, when output
strings are composed of combinators or redundant combinators are removed.

• Reduced expressions are trees. Treating them as plain strings is somewhat wasteful,
and one would prefer to perform induction on trees (combinators should not be
used as output symbols in this case though). However, such redundancy can be
very helpful for some search strategies (but of course this will not decrease com-
plexity of the exhaustive search).

• Combinators are traditionally applied to expressions on the right. However, pro-
grams and data are not separated in automatically enumerated expressions, espe-
cially when combinators are used in output. At the same time, we want to introduce
new combinators as expressions appearing in different induction tasks. This means
that these expressions should be constant, but should be applied to some variable
data. However, variable parts can appear inside constant parts, which will not be
combinators in traditional sense. One could forcefully separate “program code” and
data (if data is encoded with symbols, which don’t act as combinators). Instead, one
can also consider trees with arbitrary (not necessarily the rightmost) free leaves.

• Combinators can be applied during reduction in different order. One can start from
innermost or outermost (leftmost) combinators (that will be analogues of calls by
value and by name). Difference between them is especially prominent, when infi-
nite strings are generated (and this situation is quite typical for the task of predic-
tion). Reduction of outermost combinators can result in exponential slowdown,
since it can duplicate unreduced expressions. Indeed, if z is an unreduced expres-
sion, then applying S first in (S x y z) will result in necessity to reduce z twice. At
the same time, this can also avoid reducing inner expressions, which will be ig-
nored, e.g. in the case of such expressions as (K x y). Reduction of innermost com-
binators is usually more efficient. Unfortunately, it is inappropriate in the task of
prediction, when infinite strings are generated, because in such cases it might never
reduce leftmost combinators, so prefix of the resulting string will be unknown, e.g.

I(Y(01))  I(01Y(01))  I(0101Y(01))  …

Reduction of outermost combinators allows generating prefixes of infinite strings.
Thus, it is more suitable here. We avoided exponential slowdown by implementing
lazy computations.

In our implementation, planarization of reduced trees into strings was used,
leftmost (or topmost) combinators were applied first, separation of pure combinator

 Universal Induction with Varying Sets of Combinators 93

expressions (program code) and data wasn’t tested in experiments, and types weren’t
used. Usage of both combinators and data symbols as output was considered. Possi-
bility of ignoring redundant combinator symbols in output strings was also imple-
mented and checked.

3 Genetic Programming with CL

The common structure of genetic algorithms is well known. It includes creation of the
initial population usually composed of random candidate solutions and generation of
consequent populations with the use of crossover, mutations and selection.

In our implementation of GP with CL, crossover is performed by exchanging ran-
domly chosen subtrees in the parent candidate solutions (combinator expressions). For
example, these expressions S(SSS)S(S(S(K(SK)))) and S(SI)(S(S(SS)))(S(KK)) can
exchange the underlined subexpressions producing S(SSS)S(SI) and
S(S(S(K(SK))))(S(S(SS)))(S(KK)). Two types of mutations were implemented. The
first type is deletion of a random subtree. The second type is replacement of a termin-
al symbol in a randomly selected node of the expression with a random terminal sym-
bol. Elitist selection is used with the fitness function that penalizes both complexity of
a candidate solution and its precision. Weights of these two summands can be speci-
fied on the base of the information criterion within certain coding schemes. However,
our experiments involved only data strings, which assume precise models, thus these
weights were used as the parameters of GP controlling average length of candidate
solutions. There are also such parameters as the size of population, the tournament
size (the number of candidate solutions generated before the selection process), and
the number of iterations (generations).

Our implementation can be found at https://github.com/aideus/cl-lab

4 Experiments

The general framework for using GP with CL has been considered above. Now, let’s
describe some specific settings, which were used for our experiments. Strings with
simple regularities were used, and shortest combinator expressions producing these
strings were sought for. We considered selection of one best model per data string,
but similar results can be obtained within Solomonoff prediction framework. Popula-
tion and tournament sizes were 2000 and 4000 correspondingly (other sizes were also
tested, but smaller sizes were suitable for easier problems only). Usually, 500 itera-
tions were enough for convergence of the population. GP system was executed many
times for each task in order to estimate probability of achieving optimal solution and
diversity of final solutions.

The main set of the terminal symbols included S, K, 0, 1, and combinator symbols
were not removed from output strings (results of expression reduction). Results for
this set were compared with results for extended sets additionally including I, C, B,
W or Y combinators. Other settings without 0 and 1 terminal symbols and/or with
removal of redundant combinator symbols in output strings were also tested. Let’s
consider the following cases of increasing complexity.

94 A. Potapov and S. Rodionov

Constant Strings

At first, the string 000000000000000000 was considered for the SK01 set. One might
assume that constructing the shortest program for this string is the very simple task.
However, corresponding programs in the general-purpose languages can be ten or
more bytes long, and blind search for them can be rather difficult. GP with CL stably
find the solutions like S00(S00(000)) or S(S0)0(00000), which are reduced exactly to
this string (without continuation). If one takes even more long string containing, e.g.
28 zeros, such solutions as S00(SS0(S0000)0), S(S(S0))0(SS000) and
S00(S00(000000)) are found, which produce the required string with 0, 1 and 2 zeros
in continuation correspondingly. Further increase of the length of the required string
(e.g. up to 80 zeros) allows GP to find such expressions as S(SSS)S(S(S(S0))),
S(SSS)S(S(S(K0))) and SSS(SSS)(S(K0)), which produce infinite strings of zeros.
Moreover, these expressions were found only in ~27% of runs.

Is this result unsuccessful? Actually, infinite continuations are not necessary for
prediction, because we should compare lengths of programs, which produce x0 and
x1. Thus, it is normal if the shortest model doesn’t produce any continuation. For
example, KCL(000000000000000000.0) and KCL(000000000000000000.1) can be
compared, where KCL is the length of the shortest combinator expression producing
the given string, and dot is used only to visually separate the string and its supposed
continuation. Here, shortest found solutions are S(SS0)0(0000) and S00(S00(000))1.
Obviously, the first one is shorter and thus more probable. Thus, results for short
strings of zeros are perfectly acceptable. Nevertheless, if the shortest model produces
supposed infinite continuation, one can guarantee that algorithmic probability of this
continuation will be higher than probability of any other continuation. Thus, it is in-
teresting to examine results for constant strings in other settings.

If one would like to generate such strings as KKKKKKKKKKKKKKKKKK or
SSSSSSSSSSSSSSSSSS, corresponding solutions will be SSS(SSS)(S(KK)) and
SSS(S(SS))S. GP requires few tens iterations to find the first solution and only two
iterations to find the second solution in all runs. These solutions produce infinite
strings of K and S in output. This result is more preferable than that in the case of
S,K,0,1 since it ensures very confident prediction.

Quite interestingly, the pattern SSS(SSS)(S(K_)) was also encountered in the pre-
vious settings. This expression can help to produce any periodic strings. Discovery
and inclusion of such expressions into the combinator library is crucial. This expres-
sion is similar to the fixed point combinator, yet it doesn’t precisely follow the rule
YxxYx. Complexity of discovering such expressions can be different for different
initial libraries. Using the extended set of primitive combinators (SKICBW), GP finds
the solution SWW(B0) or its counterpart for the string 000000000000000000 in few
tens iterations on each run. This solution produces infinite string of zeros.

Periodic Strings

Let’s consider such string as 0101010101010101010101. GP with CL reliably finds
combinator expressions in the SK01 set producing this string, e.g. S(SS1)1(S0010).
These solutions don’t produce infinite continuations. Again, the string with more than 80
symbols was necessary to find the solution SSS(SSS)(S(K(01))), and it was found in less

 Universal Induction with Varying Sets of Combinators 95

than 10% of runs. However, its discovery in two different tasks allows some higher-level
induction procedure to put this expression directly into the library of combinators.

Again, search for SKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSKSK
model appeared to be much simpler requiring few tens iterations to find
S(SSS)S(S(S(K(SK)))) on every run. This solution is almost twice simpler than the
solution in the previous case, because the alphabet of terminal symbols is smaller.

The solution SWW(B(01)) or some its counterparts in the case of the SKICBW01
set is reliably found in 50–100 iterations. Again, this combinator library appears to be
more efficient for this task, and the expression SWW(B_) is the same as in the pre-
vious task (it is not the unique solution though).

Of course, the simplest solution can be found if the fixed point combinator is added
to the library. Slightly more interesting is that the solution Y(01) is found at least two
times faster using the set SKY01 (requiring only 1–2 iterations) than using the set
SKICBWY01. The fact that additional combinators can increase search complexity is
rather obvious, but it can be forgotten in more complicated cases.

Discovery of precise solutions using the SK01 set for more complex periodic
strings like 011101110111011101110111011101110111 is still relatively simple us-
ing GP, but expressions generating infinitely repeating 0111 are very difficult to find.
At the same time, expressions generating some true (yet finite) continuation are fre-
quently found, e.g. S(SS1)(S11)(S(SS)011) produces the given string with
01110111011 as the continuation.

Solutions with infinite continuations are quickly found using the SKICBW01 set.
However, many alternative solutions in addition to SWW(B(0111)) are found in more
than in 90% cases, e.g. WSW(B(W011)) or SWW(B(W011)), which don’t contain
0111 explicitly. Consequently, it can be easier to learn some useful expression for the
combinator library on simpler tasks and to use them on more difficult tasks (this
effect is known in incremental learning, but it is still interesting as higher-order de-
composition requiring more detailed study). Again, the solution Y(0111) is found in
several iterations, if the fixed point combinator is already added into the library.

However, results are not so obvious, if one further increases complexity of strings.
Consider 010110011101000110011101001011001110100011001. Supposed continu-
ation isn’t immediately obvious here even for humans. This string consists of two
substrings – (random) 0101100111010001100111010 and its truncated version
01011001110100011001. Thus, the most probable continuation should be 11010.

Precise solutions, e.g. S00(S10(011001(S101)0)), are always found using the SK01
set, and they usually predict the supposed continuation 11010. In rare cases the con-
tinuation is 110100. Presence of one additional period in the string to be generated
yields similar results, e.g. S0(S00)(S10(01(10(01(1101))0))). These results are valid,
but infinite continuations are very difficult to obtain.

More interestingly, usage of the extended set SKICBW01 gives no benefits here.
Instead, precise solutions, e.g. W0(W1(W(S(0110)(S(11)01))0)), with adequate con-
tinuation are obtained only in approximately 60% runs. These solutions have smaller
complexities, so this is the search problem. Even more interestingly, the SKY01 set
yields worse results, which consist in rapid degeneration of the population consisting
of imprecise yet very simple solutions like Y(S0011). The fixed point combinator acts
here as “anti-heuristic” for GP. Correct solution with infinite continuation can be
obtained here using an “incorrect” criterion excessively penalizing imprecision.

96 A. Potapov and S. Rodionov

Thus, it should be concluded that the combinator library cannot be chosen a priori.
It should depend both on the task and search strategy.

More Complex Regularities
Discovery of repeating patterns can be achieved by much more efficient means. Algo-
rithmic induction is interesting, because of its potential ability to find arbitrary regu-
larities. Even simplest off-design regularities cannot be discovered by conventional
weak machine learning methods. Of course, universal induction is also restricted in
discoverable regularities simply because of limited computational resources in prac-
tice. However, this limitation can at least be surpassed in limit, while weak methods
remain weak independent of the available resources. Thus, it is interesting to consider
strings with another underlying regularity

Let’s take the string 010010001000010000010000001. Precise solutions, e.g.
S0(SS(S(S0)0)(SS1000))1, are sometimes found (less than in 20% runs), but they don’t
make precise predictions. For example, this solution produces 0001 in continuation.
Of course, as it was pointed out above, the simplest solution shouldn’t necessarily have
precise continuation in order to make correct predictions on the base of algorithmic
probability. Nevertheless, this result is far from ideal. Although it is expected since
infinite continuations are difficult to achieve in these settings for simpler cases.

At the same time, such ideal solutions as S(S(SKK))(S(S(SS)))(S(KK)) for the
string SKSKKSKKKSKKKKSKKKKKSKKKKKK are surprisingly easy to find (its
equivalents are found in more than 75% of GP runs). This solution generates infinite
precise continuation SKKKKKKKS… The equivalent result SWBS(WS(BK)) can be
obtained also using the SKIBCW set with similar easiness. Somewhat more difficult
yet quite probably (~50%) is to find the solution like W(SIWS(B1))(WS(B0)) that
produces precise infinite binary string in the case of the SKICBW01 set. Additional
inclusion of Y combinator makes results worse in this case.

Search for precise solutions using SK01 appeared to be unsuccessful for tasks of
higher complexity. The string 010011000111000011110000011111000000111111
was tested, and only imprecise solutions such as 0(S11(S(S0)0(S0001111))) produc-
ing, e.g. 010000001111000011110000011111000000111100.001111000001111 (with
5 mistakes) were found. The only precise result I(WI(S(S(CB)B)(B(SB))))K was
obtained using SKICBW and additionally ignoring redundant combinators (except S
and K) in output producing SKSSKKSSSKKK… with infinite continuation. This and
more complex tasks can probably be solved using some additional combinators (or
more advanced search strategy).

It should be pointed out that some tasks successfully solved by GP weren’t solved
by the exhaustive search in reasonable time, while no opposite cases were encoun-
tered. Interestingly, effects of extension of the combinator library on exhaustive
search performance weren’t so unambiguous. However, detailed analysis of the
search problem goes beyond the scope of the paper.

5 Conclusion

Combinatory logic was considered as the reference machine adjustable by selection of
the set of primitive combinators. The genetic programming system was implemented

 Universal Induction with Varying Sets of Combinators 97

for searching the shortest combinator expressions generating required binary strings.
Performance of GP with CL was evaluated for minimal and extended sets of combina-
tors on different induction tasks. Experiments showed that extension of the combina-
tor library allows GP to solve more difficult induction tasks. At the same time, such
extension reduces performance on some tasks. This reduction is usually much less
significant than benefits on other tasks, but choosing the best set of combinators as an
upper level of search can be useful, especially if the basic search for combinator ex-
pressions is non-exhaustive.

Since CL with different sets of primitive combinators can be treated as different
reference machines, one can perform extension of combinator library to implement
adaptive universal induction. Automation of this process is the main topic for further
investigations.

Acknowledgements. This work was supported by the Russian Federation President’s
grant Council (MD-1072.2013.9) and the Ministry of Education and Science of the
Russian Federation.

References

1. Solomonoff, R.: Algorithmic Probability, Heuristic Programming and AGI. In: Baum, E.,
Hutter, M., Kitzelmann, E. (eds.) Proc. 3rd Conf. on Artificial General Intelligence. Ad-
vances in Intelligent Systems Research, vol. 10, pp. 151–157 (2010)

2. Potapov, A., Rodionov, S., Myasnikov, A., Galymzhan, B.: Cognitive Bias for Universal
Algorithmic Intelligence. SarXiv:1209.4290v1 [cs.AI] (2012)

3. Skaba, W.: Binary Space Partitioning as Intrinsic Reward. In: Bach, J., Goertzel, B., Iklé,
M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 282–291. Springer, Heidelberg (2012)

4. Looks, M., Goertzel, B.: Program Representation for General Intelligence. In: Goertzel, B.,
Hitzler, P., Hutter, M. (eds.) Proc. 2nd Conf. on AGI, Arlington, Virginia, USA, March 6-
9. Advances in Intelligent Systems Research, vol. 8, pp. 114–119 (2009)

5. Friedlander, D., Franklin, S.: LIDA and a Theory of Mind. In: Proc. 1st AGI Conference.
Frontiers in Artificial Intelligence and Applications, vol. 171, pp. 137–148 (2008)

6. Pankov, S.: A Computational Approximation to the AIXI Model. In: Proc. 1st AGI Confe-
rence. Frontiers in Artificial Intelligence and Applications, vol. 171, pp. 256–267 (2008)

7. Tromp, J.: Binary Lambda Calculus and Combinatory Logic. In: Kolmogorov Complexity
and Applications (2006), A Revised Version is available at http://homepages.cwi.
nl/tromp/cl/LC.pdf

8. Fuchs, M.: Large Populations are not always the best choice in Genetic Programming. In:
Proc. of the Genetic and Evolutionary Computation Conference, GECCO 1999 (1999)

9. Briggs, F., O’Neill, M.: Functional Genetic Programming with Combinators. In: Proc. of
the Third Asian-Pacific Workshop on Genetic Programming, pp. 110–127 (2006)

10. Solomonoff, R.: Progress in Incremental Machine Learning. Technical Report IDSIA-16-
03, IDSIA (2003)

11. Schmidhuber, J.: The New AI: General & Sound & Relevant for Physics. In: Goertzel, B.,
Pennachin, C. (eds.) Artificial General Intelligence. Cognitive Technologies, pp. 175–198.
Springer (2007)

